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1 Introduction

Attracting new customer and retaining existing customer is important to a telco company to grow
their revenue. However, most of the research shows that it costs about 6 to 7 times more to get a new
customer while keeping the customers already have needs less effort. The company needs to figure out
the reasons why the customer decide not to subscribe the service or buy the product of the company.
There are various of reasons causing the customer terminate the contract such as the lower price offer
providing by competitor, the bad experience of the service, etc.

If the churn rate is high, it will hinder the growth of the company revenue. As the data scientists in
the telephone company, churn analysis must be done by us. We need to clarify which factor drives the
customer break off the contract and determine the method to predict churn on the individual customer
churn or not.

2 Data Exploration

The data sets for this classification problem are processed from the IBM telco customer churn data.
The problem is a multi-class classification problem, where the goal is to predict the customers’ category:
{No Churn, Competitor, Dissatisfaction, Attitude, Price, Other}. No Churn means that the customer
will keep using the service, while the other five categories indicate the reason that the customer leaves
the service. There are totally 4226 customers’ data used for training, and 1409 customers’ data need to
be predicted.

2.1 Imbalanced dataset

The distribution of the target label is imbalanced. 73.4 % of the training data belongs to No Churn,
and the class with fewest sample is Other, with only 2.7 %. As a result, the key to improve the
classification performance will be to handle the problem of imbalanced data.

2.2 Dive into data

We first start by take a look at the relation between the features. There are some interesting obser-
vation as following.

1. Contract : Most of customer with Month-to-Month Contract opted to move out as compared to
that of customers with One Year Contract and with Two Year Contract. Major customers who
moved out were having Bank Withdrawal as Payment Method.
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2. Internet Type: A lot of customers choose the Fiber optic service and it’s also evident that the
customers who use Fiber optic have high churn rate, this might suggest a dissatisfaction with this
type of internet service.

3. Most of the senior citizens churn.

4. Most customers churn in the absence of online security.

5. Customers with Paperless Billing are most likely to churn.

6. Customers that doesn’t get married are more likely to churn.

7. Customers with No Premium Tech Support are most likely to churn.

8. Customers with higher Monthly Charges are also more likely to churn.

9. New customers are more likely to churn.

2.3 Correlation of charge information in service data

Service.csv offers information about the types of service customers use and how they are charged.
Among these data, the data describing the type of service is categorical, and the data relating to the
charge is numerical. Some numerical data represent the average cost, and some describe the total cost.
By plotting their paired correlation, we can find some correlation between them. For example, the Total
Long Distance Charges is correlated to Avg Monthly Long Distance Charges. As a result, we only use
part of the features for training. The used features are listed in Section 3.3.

3 Missing Value Handling

3.1 Simple intuition between features

The following brackets of the missing values can be filled by each other. {’Age’, ’Under 30’, ’Senior
Citizen’}, {’Dependents’, ’Number of Dependents’}, {’Lat Long’, ’Latitude’, ’Longitude’}, {’Referred a
Friend’, ’Number of Referrals’}, {’Total Long Distance Charges’, ’Avg Monthly Long Distance Charges’,
’Tenure in Months’}, {’Unlimited Data’, ’Total Extra Data Charges’}, {’Total Refunds’, ’Total Charge’,
’Total Long Distance Charges’, ’Total Extra Data Charges’, ’Total Revenue’}.

3.2 Bayesian method

We used the Bayesian probability to fill the missing value. First, we find the Bayesian probability of
each data. Second, we filled the missing value by probability based on the existing value. Finally, pick
the highest probability to be the filling value.

3.3 Nearest Neighbor imputation

The k-Nearest Neighbor(KNN) algorithm is a popular machine-learning-based model for imputa-
tion [2]. Following the tutorial written by Jason Brownlee 1 and Kyaw Saw Htoon 2, we work on the
imputation in the following steps:

1https://machinelearningmastery.com/knn-imputation-for-missing-values-in-machine-learning/
2https://medium.com/@kyawsawhtoon/a-guide-to-knn-imputation-95e2dc496e
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1. Select the features that need to be imputed. We choose: ’Tenure in Months’, ’Avg Monthly Long
Distance Charges’, ’Avg Monthly GB Download’, ’Total Extra Data Charges’, ’Total Refunds’,
’Offer’, ’Phone Service’, ’Multiple Lines’, ’Internet Service’, ’Internet Type’, ’Online Security’,
’Online Backup’, ’Device Protection Plan’, ’Premium Tech Support’, ’Streaming TV’, ’Streaming
Movies’, ’Streaming Music’, ’Unlimited Data’, ’Contract’, ’Paperless Billing’, ’Payment Method’,
’Referred a Friend’, ’Gender’, ’Senior Citizen’, ’Married’, ’Dependents’, ’Under 30’.

2. Transfer all the categorical data to one-hot representation.

3. Because KNN Imptuer is a distance-based method, we need to normalize all the data. Here we
scale the variables to have values between 0 and 1.

4. Apply the KNNImputer provided by Scikit-learn [3] with n neighbors=10 and weights=distance to
the normalized data.

5. For ’Satisfaction Score’, ’Latitude’, ’Longitude’, we don’t use knn imputer. Instead, we only fill
the missing value with the median of the feature.

4 Approaches

4.1 Approach 1: Logistic regression with class weight

Logistic regression is easy to realize and achieves good performance with linearly separable classes.
As a result, it is natural to start with this method. As we discussed in the lecture, we need data to help
the logistic regression to decide the boundary and update the model by calculating the error. However,
if the dataset is imbalanced, then the process will failed to update the model by the data from minority
classes. To address this problem, we use the weighted Logistic regression model to take into account the
skewed distribution of the classes.

To be more specifically, in the LogisticRegression function of scikit-learn, we set the class weight of
to balanced. In the setting, the weights of classes is wj =

Ntotal

K×nj
, where wj is the weight for class j, Ntotal

is the total number of the dataset, K is the number of the output class, and nj is the number of the
samples in class j. This means that we give higher weights to the the minority class and lower weights
to the majority class. The weights will be used in the log loss function, and give the loss penalty.

4.2 Approach 2: Adaboost with 2 stage classification

From the previous approach, logistic regression doesn’t seem to work so well. One of the reasons
might be that the data is not linear separable. Hence, we want to introduce a more powerful algorithm,
Adaboost, which can deal with nonlinear data. After training with Adaboost, the F1-score on the private
data is 0.261 which is still not good enough. We used to classify the customer to the category in one
time but this classification strategy seems too difficult for a model to make right prediction. All things
considered, to simplify the classification task, we first transform the problem into predicting whether the
customer is churn or not. Since there is correlation between ’Satisfaction Score’ and ’Churn’, it might
be more easier to classify if a customer is churn or not at first. Once the customer is classified as churn,
then we’ll break down the churn category, i.e., stage 2 to predict which reason trigger the customer churn
. In both stage, we use Adaboost to do the classification.

The parameter of the Adaboost is shown in Table 1.
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Parameter n estimators booster max depth learning rate subsample eval metric
Value 500 Decision Tree 2 1 0.8 auc

Table 1: The parameters of the Adaboost.

4.3 Approach 3: XGboost with oversampling

XGBoost (eXtreme Gradient Boosting) [1] is a machine learning library under the Gradient Boosting
framework, and it is designed for speed and performance. The library provides a system for use in various
computing environments, such as parallelization using multiple CPU cores and distributed Computing
for training huge models utilizing a cluster of machines3. XGBoost is also widely used by machine
learning practitioners to create state-of-the-art data science solutions4.

In this work, we use the Python implementation5 to run the experiment. The parameter we used
for the XGboost is shown in Table 2. We choose to use auc as evaluation metric because our dataset is
imbalanced and we calculate the F1-score as a measure of performance. According to the document, if
auc is used for eval metric, then we need to specify multi:softprob to objective, because AUC is calculated
by 1-vs-rest with reference class weighted by class prevalence. Other parameters are chosen by using
cross validation.

Parameter n estimators booster max depth eta subsample objective num class eval metric
Value 100 gbtree 24 0.2 0.8 multi:softprob 6 auc

Table 2: The parameters of the XGboost.

As for handling the imbalanced dataset, we use the RandomOverSampler provided by imblearn6

toolkit with a random seed to be 42. The default sampling stratedy is not majority, which means it will
resample all classes but the majority class.

5 Discussion

5.1 Missing value handling strategy

We fill in missing value by Section 3.1 & 3.3 respectively. In the training process, we both trained the
Logistic regression model with imbalance data and then predict the category in one time. The F1-scores
of fill-in method 3.1 and 3.3 on the Kaggle private data are 0.141 and 0.283 respectively. Thus, we choose
to use Section 3.3 (Nearest Neighbor imputation) for the following discussion.

5.2 Classification performance

Table 3 shows the F1-score of all approaches. Among the first three models, XGboost achieves
the best result with 0.308, however the difference is not substantial. Next, we choose the XGboost to
combine with the two strategies that handling the imbalanced data problem. the result shows that we
can improve the classification performance by the strategies. Among these two strategies, oversampling
improves most, which can reach 0.350.

3https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
4https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions
5https://xgboost.readthedocs.io/en/stable/python/python_intro.html
6https://imbalanced-learn.org/stable/
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Approach F1-score
Adaboost 0.261
Logistic regression with class weight 0.297
XGboost 0.308
XGboost w/ 2-stage classification 0.322
XGboost w/ oversampling 0.350

Table 3: The F1-score of the approaches.

5.3 Efficiency

Logistic Regression Adaboost XGboost
Train time complexity O(nd) O(ndw) O(KD||x||0logn)
Test time complexity O(d) O(dw) O(KD)

Table 4: The time complexity of the three methods.

As we can see in Table 4, Training with Logistic regression takes O(nd), where n is the number
of samples, d is number of feature.7 Prediction for a new sample takes O(d). When it comes to
training Adaboost, we will go through n variables for d features to find out the decision stump, and
then calculate their loss function and to update the weights. In this process, it takes O(nd) operations.
The same calculation is repeated for w number of weak learner so it takes O(ndw) operations. While
testing, the model predicts depending on the decision stump or the weak learner which comprises only one
feature. This operation is repeated for each weak learner and each weak learner only takes one feature into
consideration which means that this process takes O(dw).8 As for XGBoost, it takes O(KD||x||0logn)[1],
where K is the number of trees, D is the depth of the trees, and x is the number of non-missing entries
in the training data. Prediction for a new sample takes O(KD). All the methods can be trained within
30 seconds on the training set even with oversampling strategy.

5.4 Scalability

Both Logistic regression and XGboost can be parallelized during training. Using the Logistic re-
gression in Scikit-learn 9, we can simply assign n jobs for multi-core training. As for XGboost, one of
its biggest contribution is that it offers a scalable system that support parallel Learning, distributed
Computing, and Out-of-Core Computing.

On the other hand, we could hardly train Adaboost with multi-core because weightings of the ex-
amples in the next iteration of the algorithm depends on the performances of the previous iteration10.
That is, a new iteration cannot be started before the previous one being done. Despite this, we still can
make the classification parallelized because the weak learner can work independently.

5.5 Interpretability

XGboost API offers an easy way to print out the importance of the features. From Figure 1(a) we
can see that the top five features are Latitude, Longitude, Average Monthly Distance Charges, Tenure
in Months, and Avg Monthly GB Download. As for the Logistic regression, we can use additional
toolkit called eli5 to show the weights of the features. Figure 1(b) shows an example of weights in the
Logistic regression when predicting No Churn, Competitor, Dissatisfaction. There are some interesting

7https://levelup.gitconnected.com/train-test-complexity-and-space-complexity-of-logistic-regression-2cb3de762054
8https://medium.com/@chaudhurysrijani/tuning-of-adaboost-with-computational-complexity-8727d01a9d20
9https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

10https://www.researchgate.net/post/Which_is_the_best_way_for_parallelizing_the_Adaboost_algorithm
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observation we can get from this result, and some of them are also aligned to the observations mentioned
in Section 2.2. First of all, when the target is No Churn, Satisfaction Score and Contract Two Year are
the top two features. This matches our common sense. When the target is Dissatisfaction, Offer Offer
D has the largest weight, and the Internet Type Fiber Optic also has a positive weight. This is aligned
with the observation mentioned in Section 2.2 that customers choosing Fiber optic service have high
churn rate. This might offers us some insight when making business decision.

(a) XGboost (b) Logistic regression

Figure 1: Feature importance for XGboost and Logistic regression

6 Conclusion

In this project, we investigated three classification models and two strategies for imbalanced dataset.
Among these approaches, XGboost provides an easy way to interpret what model have learned and is
well established in system design, which is efficient and scalable. For the classification performance,
XGboost with oversampling training strategy can achieve the best performance among the approaches
listed here. As a result, we recommend XGboost with oversampling as the model to use practically.

7 Contribution

• Hsiao-Tzu Hung r08922a20: kNN imputation, weighted Logistic regression, XGboost with over-
sampling, interpret models, fight on the score board, report writing(45%)

• Chun-Yen Chen r09222037: Simple intuition between features, Bayesian method, report writ-
ing(10%)

• Di-En Sung 60941006s: data exploration, Adaboost with 2 stage classification, logistic regression
with two kinds of missing value handling, report writing (45%)
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