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@ Motivation @ Baseline Approach
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* Facing fine-grained image classification task, we

aim to use external information, i.e., text of the
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@ Methods

® Auxiliary Classifier ® Multi-Modality

Problem: Long-tailed Problem: Fine-grained

* Auxiliary classifier in multi-task fashion e LM embedding as cls token + contrastive learning
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» Auxiliary classifier as task separator

e CLIP-zero shot vs fine-tune on CLIP
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@ Results @ Conclusion
Method Freq. ~ Comm. Rare Main  We propose four methods, two of which based on auxiliary classifiers
Baseline 0.894 0715 0.284 0.730 and the other two are multi-modality based.
* The approaches with auxiliary classifiers aim at the long-tailed
Aux CLF distribution problem while the multi-modal approaches aim at the
/ Multi-Task . . . (e .
fine-grained classification problem.
Aux CLE o gives the best performance overall with
/4-Stage the highest accuracy on track.
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