DLCV Fall 2022 Final Project / From Group 25

Liu Hsin Ping R09946030

Bo-Yu Chen R10944032 Tun-Min Hung R09946015 Hsiao-Tzu Hung R08922A20

- Long-tailed distribution dataset leads to biased model performance on different tasks (comm, freq, rare), we aim to teach the models how to predict the frequency of an input image.
- Facing **fine-grained image** classification task, we aim to use external information, i.e., text of the labels, for guiding our models.

Baseline Approach

TransFG

 Choose tokens with maximum attention for each head in the second last layer.

Methods

Auxiliary Classifier

Problem: Long-tailed

• Auxiliary classifier in multi-task fashion

Auxiliary classifier as task separator

Multi-Modality

Problem: Fine-grained

• LM embedding as cls token + contrastive learning

• CLIP-zero shot vs fine-tune on CLIP

Results

Method	Freq.	Comm.	Rare	Main
Baseline	0.894	0.715	0.284	0.730
Aux CLF /Multi-Task				
Aux CLF /4-Stage				

Multi-Model
/BERT

Multi-Model

Conclusion

- We propose four methods, two of which based on auxiliary classifiers and the other two are multi-modality based.
- The approaches with auxiliary classifiers aim at the long-tailed distribution problem while the multi-modal approaches aim at the fine-grained classification problem.
- gives the best performance overall with the highest accuracy on track.