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Abstract

In this paper, we present an update to the NISQA speech qual-
ity prediction model that is focused on distortions that occur in
communication networks. In contrast to the previous version,
the model is trained end-to-end and the time-dependency mod-
elling and time-pooling is achieved through a Self-Attention
mechanism. Besides overall speech quality, the model also pre-
dicts the four speech quality dimensions Noisiness, Coloration,
Discontinuity, and Loudness, and in this way gives more in-
sight into the cause of a quality degradation. Furthermore, new
datasets with over 13,000 speech files were created for training
and validation of the model. The model was finally tested on
a new, live-talking test dataset that contains recordings of real
telephone calls. Overall, NISQA was trained and evaluated on
81 datasets from different sources and showed to provide reli-
able predictions also for unknown speech samples. The code,
model weights, and datasets are open-sourced.

Index Terms: speech quality, deep learning

1. Introduction

One of the main performance indicators for the evaluation of
telecommunication networks is the perceived speech quality. It
is traditionally derived from subjective listening tests according
to ITU-T P.800 [1]] or recently also through crowdsourced lis-
tening tests according to ITU-T P.808 [2}]3]]. The average rating
across all test participants for a speech sample then gives the
mean opinion score (MOS). However, because listening tests
are costly and time consuming, instrumental models have been
developed that can predict the speech quality automatically. The
currently recommended model by the ITU-T is POLQA [4],
which requires the clean reference and the degraded output sig-
nal to predict the speech quality based on a comparison of both
signals. In contrast to these types of double-ended models,
single-ended models only require the degraded output signal,
which makes it possible to monitor the quality of live phone
calls, or predict the speech quality of samples for which no clean
reference is available. However, the currently recommended
single-ended speech quality by the ITU-T, P.563 [5], is only
available for narrowband (NB) speech signals. Furthermore,
the prediction performance showed to decrease for conversa-
tional speech and modern VoIP (Voice over IP) distortions that
were not present when P.563 was developed [6].

While the overall MOS is an important indicator, it gives
no insight into the cause of a quality degradation. To overcome
this problem, it was shown in [7]] that the speech quality multi-
dimensional space of modern communication networks is made
up of the three orthogonal dimensions: Noisiness, Coloration,
and Discontinuity. Later, the Loudness was added as a fourth di-
mension in [8], although it is not entirely orthogonal to the other
dimensions. These four perceptual dimensions can be quanti-

fied through auditory listening tests and are linked to technical
root causes.

Recently, deep learning methods have been applied to build
single-ended speech quality models [9H17] and showed to out-
perform traditional approaches without the need for a clean ref-
erence. In [18]], we presented the deep learning model NISQA
that predicts speech quality of super-wideband (SWB) speech
samples. In [[19], we presented an extension of the model that
predicts three of the four quality dimensions based on expert
scores due to the lack of available subjective data. In this pa-
per, we present an update to NISQA that predicts the overall
MOS and the four speech quality dimensions with one multi-
task neural network. Furthermore, we created a large pool of
eight new speech quality datasets with subjective MOS and
quality dimension ratings for training and evaluation. Because
of the increased available data, we could train the model end-
to-end with subjective data only, without the need for objec-
tive MOS values. Also, we improved the neural network ar-
chitecture of the model by replacing the CNN-LSTM structure
with a CNN-Self-Attention—Attention-Pooling (CNN-SA-AP)
network. The model is overall trained and evaluated on a large
set of 81 datasets from different sources. Another advantage of
the updated NISQA model is that it can be applied to speech
samples of any duration or sample rate without any preprocess-
ing steps or level normalisation. Finally, the PyTorch code, the
model weights, and several of the datasets are open-sourced on
GitHut{l]

2. Method

The model can be divided into four stages: 1) Mel-Spec seg-
mentation, 2) Framewise model (CNN), 3) Time-Dependency
model (Self-Attention), 4) Pooling model (Attention-Pooling).
An overview of this architecture is shown in Figure[I] In the
first stage, Mel-specs are calculated from the input signal and
then divided into overlapping segments. In the second stage, a
framewise neural network with the Mel-spec segments as inputs
is used to compute features that are suitable for speech quality
prediction. These features are calculated on a frame basis and
therefore result in a sequence of framewise features. In a third
stage, the time dependencies of the feature sequence are mod-
elled. Finally, the features are aggregated over time in a pooling
layer. The aggregated features are then used to estimate a single
MOS value.

In this paper, different neural network architectures are ap-
plied and compared for each model stage. In the ablation
study (Sect. ), we show that the best combination is a CNN
as a framewise model, a Self-Attention network as a time-
dependency model, and Attention-Pooling as a pooling model.

I www.github.com/gabrielmittag/NISQA
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Figure 1: General speech quality model structure.

More details about the neural network structure can be found in
the open-sourced code.

2.1. Mel-Spec Segmentation

The input to the model are Mel-spec segments with 48 Mel-
bands. The FFT window length is 20 ms with a hop size of
10 ms. The maximum frequency was chosen to be 20kHz to
be able to predict speech quality for up to fullband (FB). The
Mel-specs are divided into segments with a width of 15 (i.e.
150 ms) and a height of 48. The hop size between the segments
is 4 (40 ms), which leads to a segment overlap of 73% and over-
all 250 segments for a 10-second speech signal. The frame-
wise network is provided with this wider segment of 150 ms
to give the network some contextual awareness. The short-term
and long-term temporal modelling, however, follows in the third
model stage.

2.2. Framewise Model

As framewise model the CNN from [ 18] is used. It contains 6
convolutional layers and 3 max-pooling layers that downsam-
ple the input of dimension 48 X 15 to a size of 6 x 3. The final
convolutional layer does not apply a width padding and there-
fore further reduces the output dimension to 64 x 6 X 1, where
64 represent the number of kernels. Finally, the output is flat-
tened. Thus, each Mel-spec segment results in a feature vector
of length 384 after passing the CNN. As a baseline model, a
basic deep feedforward network with a depth of four layers and
2048 hidden units each is implemented.

2.3. Time Dependency

In this stage, the individual time steps of the feature sequence
can interact with each other to improve the prediction perfor-
mance. To this end, a Self-Attention network is applied, which
is based on the Transformer encoder [20]. Because the Self-
Attention only models temporal dependencies of framewise fea-
tures that are already computed by a deep framewise network,
a relatively low complexity of the Transformer is sufficient.
Moreover, in practice, it was noted that the multi-head mech-
anism did not improve the results. Therefore, the block is im-
plemented with a single head, a depth of 2 blocks, a model
dimensionality of diyf = 64, and a feedforward network with
dif,;# = 64 hidden units. As a baseline, a single BILSTM layer
with 128 hidden units in each direction is used.

2.4. Pooling

The quality of a telephone call can generally not be predicted
accurately by simply taking the average quality across time. As
was shown in [21], the “recency effect” and the out-weighting
of poor quality segments in a call have to be considered ade-
quately. Therefore, we propose to use an attention mechanism
for time pooling. An overview of the attention-pooling block
is shown in Figure[2] where y is the output d¢ex L-matrix of the
time-dependency model. The matrix contains a zero-padded se-
quence of length L with feature vectors of dimension dys. The
feedforward network with an output size of 1 and 128 hidden
units is applied to each time step separately and identically.
The attention scores computed by the feedforward network are
then masked at the zero-padded time steps and applied to a soft-
max function to yield the normalised attention weights. These
weights are applied to the input matrix y with a matrix multi-
plication operation. The weighted average feature vector z is
then finally passed through a fully connected layer to estimate
the overall speech quality. As baseline models, average-pooling
and max-pooling are applied.

MatMul
t
SoftMax
t
Mask
t

Feedforward

Y

Figure 2: Attention-pooling block

2.5. Multidimensional model

The multidimensional prediction can be seen as a Multi-Task-
Learning problem. The pooling block is computed separately
for each dimension and overall MOS, while the CNN and Self-
Attention network is shared across all tasks. Figure [3] shows
how the Mel-spec features are calculated by the same CNN and
Self-Attention network for each dimension. The outputs of each
Self-Attention time-step are then the input for five individual
pooling blocks that predict the overall MOS and the dimension
scores.

MOSs

Figure 3: NISQA neural network architecture.



3. Datasets

NISQA is trained and evaluated on a large set of 59 train-
ing datasets (72,903 files), 18 validation sets (9,567 files), and
4 test sets (952 ﬁles 55 of the datasets are taken from
the POLQA Pool [4], 7 of the datasets are taken from the
ITU-T P Suppl. 23 [22] pool, 11 datasets are older, inter-
nal speech quality datasets. Additionally, for this work 8 new
datasets with overall quality and quality dimension ratings, and
a large variety of different speakers, were created. 2 train-
ing datasets NISQA_TRAIN_SIM (10,000 samples from 2,322
speakers), NISQA_TRAIN_LIVE (1,020 samples from 486
speakers) and 2 validation datasets NISQA_VAL_SIM (2,500
samples from 938 speakers), NISQA_VAL_LIVE (200 sam-
ples from 102 speakers). The clean source speech samples
are taken from four different English speech corpora: AusTalk
[23]] (containing conversational speech taken from interviews),
DNS-Challenge [24] (LibriVox audiobooks), TSP [25] (read
out Havard sentences [26]]), and UK-Ireland dataset [27] (read
out public domain texts). The datasets NISQA_TRAIN_SIM
and NISQA_VAL_SIM contain simulated speech distortions,
such as packet-loss, bandpass filter, different codecs, and clip-
ping. To simulate real background noises, the noise clips
from the DNS-Challenge datasets were used, which in turn
are taken from the Audioset [28]], freesound [29]], and DE-
MAND [30]] corpora. The datasets NISQA_TRAIN_LIVE and
NISQA_VAL_LIVE contain live Skype and landline-to-mobile
phone recordings, where the LibriVox audiobook reference files
were played back through a loudspeaker directly into the termi-
nal device (phone/laptop). During the recording different real
distortions were created, such as typing on a keyboard, opening
window (street noise), or poor reception. These four training
and validation datasets were annotated in the crowd according
to ITU-T P.808 [2] with 5 ratings per file.

Additionally, four independent test sets were created
that were not considered before the final training of the
NISQA model. NISQA_TEST_P501, NISQA_TEST_FOR,
NISQA_TEST_NSC contain simulated distortions and addition-
ally live VoIP calls with Zoom, Skype, Google Meet, What-
sApp, and Discord, where the reference speech samples were
played back directly from the laptop. Then a poor internet
connection was simulated to obtain files with different distor-
tions (packet-loss, warping, low-bitrate). NISQA_TEST_P501
contains the English Annex C files from ITU-T P.501 [31],
NISQA_TEST_FOR contains English conversation samples
from the Forensic Voice dataset [32,/33]], NISQA_TEST_NSC
contains German conversational speech from the NSC dataset
[34]. These three datasets were again annotated in the crowd
according to ITU-T P.808 with 30 ratings per file.

Because the use-case for a single-ended prediction model
are real phone calls with conversational speech, from an
unknown speaker, device, and network, a fourth dataset
NISQA_TEST_LIVETALK with real phone call recordings was
created, where the talkers spoke directly into the terminal de-
vice (i.e. a smartphone or laptop). The test participants were in-
structed to talk loudly, quietly, with loudspeaker, or music in the
background to obtain different test scenarios and speech quality
distortions. Depending on the condition the talkers were located
in different environments, such as in a café, inside a car on the
highway, inside a building with poor reception, elevator, shop-
ping centre, subway/metro station, on a busy street, etc. The
talkers used their mobile phone to call either through the mobile

2A detailed overview of the individual datasets can be found on the
GitHub.

network or with a VoIP service (Skype/Facebook). The dataset
consists of 58 different conditions with each 4 different files, re-
sulting in 232 files overall. The speech files were recorded from
8 different talkers (4 male and 4 female) in German, where for
each condition 2 male and 2 female talkers were selected. The
dataset was annotated in the lab according to P.800 with 24 rat-
ings per file.

4. Ablation Study

In this section, it will be shown that a combination of a CNN as a
framewise model, a Self-Attention network as time-dependency
model, and an Attention-Pooling network as pooling model
(CNN-SA-AP) gives the highest prediction performance. To
this end, an ablation study is performed, in which one of the
three neural network model stages is either removed or replaced
with another network type. For training, the simulated and live
training sets NISQA_TRAIN_SIM and NISQA_TRAIN_LIVE
were used. The models are evaluated on the average PCC (Pear-
son’s correlation coefficient) between the validation datasets
NISQA_VAL_SIM and NISQA_VAL_LIVE. The training for
each model configuration is run 12 times to rule out random
effects, the median performance over these 12 training runs is
presented in the following result tables.

4.1. Framewise Model

Table [Tl shows the results when different framewise models are
applied. The CNN-SA-AP model clearly outperforms the ba-
sic feedforward neural network (FFN-SA-AP) and the model
without framewise network that only applies Self-Attention and
Attention-Pooling (Skip-SA-AP).

Table 1: Framewise model comparison with Median PCC.

Model  Skip CNN  FFN
r 0.772  0.870 0.812

4.2. Time-Dependency Model

Table[2]shows the results for different time-dependency models.
Again, it can be seen that the CNN-SA-AP model achieves the
best results. However, the difference between Self-Attention
and CNN-LSTM-AP is only small. Further, it can be seen that a
combination of SA and LSTM worsens the results, compared
to SA or LSTM only. Although the difference between SA
and LSTM is small, the overall performance can be notably
increased when compared to the model CNN-Skip-AP without
time-dependency modelling.

Table 2: Time-Dependency comparison with Median PCC.

Model  Skip SA LSTM LSTM-SA  SA-LSTM
r 0.851 0.870  0.866 0.862 0.863

4.3. Pooling

Table 3: Pooling comparison with Median PCC.

Model AP Avg Max
r 0.870 0.867 0.866




Table 4: Per-condition validation and test results of the overall quality in terms of PCC and RMSE after first-order mapping.

Dataset Scale Lang Con Files NISQA P563 ANIQUE+ ‘WAWEnets POLQA DIAL VISQOL
r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE
103_ERICSSON SWB se 54 648 0.85 0.38 0.36 0.66 0.54 0.60 0.28 0.68 0.87 0.34 0.78 0.45 0.26 0.69
104_ERICSSON NB se 55 660 0.77 0.47 0.64 0.57 0.68 0.55 0.13 0.74 0.91 0.31 0.76 0.49 0.39 0.69
203_FT_DT SWB fr 54 216 0.92 0.36 0.68 0.69 0.47 0.82 0.64 0.72 0.91 0.38 0.79 0.57 0.59 0.75
303_OPTICOM SWB en 54 216 092 033 085 044 0.71 0.59 043 0.76 093  0.31 0.71 0.59 042 076
403_PSYTECHNICS SWB en 48 1152 0.91 0.36 0.81 0.50 0.77 054 0.78  0.53 0.96  0.24 0.92 0.34 073 057
404_PSYTECHNICS NB en 48 1151 0.77 039 082 035 0.74 041 0.14  0.61 0.86  0.31 0.67 0.46 0.55 051
503_SWISSQUAL SWB de 54 216 092 034 0.71 0.62 0.61 0.70 059 071 0.94  0.29 0.85 0.46 0.65  0.67
504_SWISSQUAL NB de 49 196 092 037 0.83  0.50 0.79  0.56 0.54  0.77 0.87 045 0.73 0.63 0.60  0.73
603_.TNO SWB nl 48 192 0.89 044 0.83 053 0.69  0.69 059 077 095  0.29 0.86 0.48 047  0.84
ERIC_FIELD_GSM_US NB en 372 372 079 036 042 054 0.17 058 0.60 047 075 039 0.71 0.42 0.51 051
HUAWEI_2 NB zh 24 576 098 021 093 035 079 059 0.63 075 094 032 0.89 0.44 097 024
ITU_SUPPL23_EXPlo NB en 44 176 092 031 0.90 034 098  0.15 073 053 0.91 0.32 0.91 0.33 0.86 039
ITU_SUPPL23_EXP3d NB ja 50 200 092 027 093 026 097 017 0.68 050 085 036 0.84 0.36 079 041
ITU_SUPPL23_EXP30 NB en 50 200 0.91 0.30 0.91 0.30 098  0.15 079 045 0.88 035 0.87 0.36 078 045
TUB_AUS FB en 50 600 0.91 0.21 0.62 0.40 0.65 0.39 0.70 0.36 0.88 0.24 0.73 0.35 0.63 0.40
TUB_LIKE SWB de 8 96 0.98 0.25 0.85 0.60 0.85 0.61 0.59 0.93 0.99 0.16 0.89 0.53 0.81 0.67
NISQA_VAL_LIVE FB en 200 200 0.82 0.40 0.42 0.64 0.51 0.61 0.36 0.66 0.67 0.52 -0.22 0.69 0.66 0.53
NISQA_VAL_SIM FB en 2500 2500 0.90 0.48 0.45 0.99 0.54 0.93 0.30 1.05 0.86 0.56 0.36 1.03 0.78 0.69
NISQA_TEST_P501 FB en 60 240 0.95 0.31 0.72 0.67 0.73 0.66 0.80 0.59 0.95 0.30 0.80 0.59 0.80 0.58
NISQA_TEST_NSC FB de 60 240 0.97 0.23 0.69 0.67 0.62 0.74 0.78 0.59 0.93 0.35 0.79 0.57 0.78 0.59
NISQA_TEST_FOR FB en 60 240 095 026 052 071 0.54 070 0.81 0.49 092 033 0.75 0.55 0.68 0.6l
NISQA_TEST_LIVETALK FB  de 58 232 090 035 0.70  0.58 0.56  0.68 0.66  0.61 N/A  N/A N/A N/A N/A  N/A

Table 5: Per-condition validation and test results of the speech quality dimensions in terms of PCC and RMSE after first-order mapping.

Dataset NOISINESS COLORATION DISCONTINUITY LOUDNESS
NISQA DIAL NISQA DIAL NISQA DIAL NISQA DIAL
r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE

503_SWISSQUAL 094 026 084 039 0.84 039 0.88 0.34 0.86 031 0.74 0.42 0.91 0.29 0.94 023
TUB_AUS 097 016 0.88 0.29 084 028 0.81 0.3 0.92 0.23 0.61 0.46 0.74  0.32 0.62 038
NISQA_VAL_LIVE 073 049 0.31 0.69 057 043 -0.11 0.51 0.55 0.56 0.10  0.67 0.73 0.47 0.54 058
NISQA_VAL_SIM 086  0.48 0.40  0.87 084 050 0.25 0.90 0.84  0.54 0.23 0.97 0.81 0.48 0.38  0.76
NISQA_TEST_P501 095  0.30 086 048 0.91 0.31 0.62 0.60 091 0.37 0.68 0.65 0.95 0.26 0.88 040
NISQA_TEST_NSC 096  0.22 0.78 0.50 093 0.28 0.70 0.55 096  0.30 0.79 0.63 096  0.25 0.93 0.34
NISQA_TEST_FOR 095 023 0.70  0.50 094 024 0.67 0.53 0.97 0.25 0.81 0.55 0.96  0.20 087  0.36
NISQA_TEST_LIVETALK  0.76 047 N/A  NA 087 031 N/A N/A 0.83 0.40 N/A N/A 0.71 0.36 N/A N/A

The results for different pooling mechanism can be seen in
TableEL where a CNN as framewise and SA as time-dependency
model is applied. The performance difference between the anal-
ysed pooling mechanism is only marginal, however, Attention-
Pooling slightly performs better than Average- or Max-Pooling.

5. Results

The final model was trained on a set of 59 training and 18 vali-
dation datasets with a batch size of 160, learning rate of 0.001,
Adam optimiser and bias-aware loss according to [35]]. After
each epoch, the model weights were stored, and the results on
the training and validation set were calculated as average PCC
across all datasets. The training was stopped after the valida-
tion PCC did not increase for more than 10 epochs. The model
weights with the best performance on the validation set were
selected as the final model. This model was then evaluated on
the four independent test sets, which were not considered for
training, hyper-parameter tuning or model selection.

Table E| presents the validation and test set results of the
overall MOS prediction compared to the single-ended models
P.563 [5], ANIQUE+ [36], WAWEnets [12], and the double-
ended models POLQA [4]], DIAL [37]], and VISQOL (v3.1.0)
[38ﬂ NISQA outperforms the other single-ended speech qual-
ity models on most of the datasets, except for the ITU-T Suppl.

3pP563 and ANIQUE+ only allow to predict narrowband signals.
Therefore, all signals have been downsampled to 8 kHz sample rate for
the prediction with these models. VISQOL was applied in speech mode
(as it gave better results than the audio mode) that only considers fre-
quencies up to 8 kHz (wideband). Dataset NISQA_TEST_LIVETALK
contains no reference signals and can therefore only be compared to
single-ended models.

23 datasets, where ANIQUE+ achieved the best results. How-
ever, it should be noted that these datasets were available for
the development of ANIQUE+. POLQA outperforms NISQA
on most of the POLQA-Pool datasets (103—-603) that contain
typical ITU-T P.800 double sentences with a silent pause in be-
tween. In contrast, NISQA achieves better results than POLQA
on the NISQA test datasets that contain conversational speech.

Table |§] shows the results of the speech quality dimensions
prediction for the datasets for which subjective speech qual-
ity dimension ratings are available. NISQA outperforms the
double-ended model DIAL on most of the datasets and achieves
overall good results with RMSEs of 0.16-0.56.

6. Conclusions

We presented the speech quality model NISQA, which, besides
overall MOS, also predicts the four speech quality dimensions
Noisiness, Coloration, Discontinuity, and Loudness. With this
degradation decomposition approach, more insights into the
cause of an underlying quality impairment are provided. The
model is based on a CNN with following Self-Attention net-
work for time-dependency modelling and an Attention-Pooling
block for final time pooling. The model is trained and eval-
uated on a large set of 81 datasets from different sources and
showed to give reliable results on unknown data and real, live
phone calls. Furthermore, we open-source the code, the model
weights, and speech quality datasets. The presented model is
focused on distortions that occur in modern speech communi-
cation networks. However, the model weights can also be used
to fine-tune the model for related tasks, such as the prediction
of enhanced or synthesised speech as shown in [39].
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